
www.ierjournal.org International Engineering Research Journal (IERJ), Volume 2 Issue 4 Page 1756-1760 ISSN 2395-1621

© 2015, IERJ All Rights Reserved Page 1

 ISSN 2395-1621

Improving Efficiency of Parallel Mining

of Frequent Itemsets using Fidoop-hd

#1
Anjali Kadam,

#2
Nilam Patil

1mianjalikadam@gmail.com

2snilampatil2012@gmail.com

#12Department of Computer Engineering

Pune University, Maharashtra, India.

ABSTRACT

ARTICLE INFO

Present parallel mining algorithms for frequent item sets lack a mechanism that enables

automatic parallelization, load balancing, data administration, and fault liberality on

large clusters. As a solution to this problem, design a parallel frequent item sets mining

algorithm called Fidoop using the Map Reduce programming model. To achieve

compressed storage and avoid building restrictive pattern bases, Fidoop incorporates

the frequent items ultrametric tree, rather than regular FP trees. In Fidoop, two

MapReduce jobs are implemented to complete the mining task. In the complex

MapReduce job, the mappers independently decay item sets, the reducers perform

combination operations by compressing data. This system implement Fidoop on private

Hadoop cluster. This system show that Fidoop on the cluster is sensitive to data

distribution and dimensions, because item sets with distinct lengths have different

decaying and construction costs. In this paper system improve Fidoop’s performance,

system develop a workload balance metric to measure load balance across the cluster’s

computing nodes. System processes Fidoop-HD, an extension of Fidoop, to speed up the

mining performance for high-dimensional data analysis. Experiments are shown using

real-world celestial face of data demonstrate that our proposed solution is efficient and

scalable.

Keywords: Frequent item sets, Hadoop cluster, load balance, MapReduce.

Article History

Received: 9
th

 July 2016

Received in revised form :

9
th

 July 2016

Accepted: 12
th

 July 2016

Published online :

12
th

 July 2016

I. INTRODUCTION

Data Mining has a great approach about the information
industry and in society as a whole in recent years. One of the
major problems in data mining is finding association rules
from databases of transactions where each transaction
consists of a set of items. Many ways have been proposed to
find frequent item sets from a large database. Parallel
computing offers a possible solution to the computation
requirement of this task, if the efficient and scalable parallel
algorithms can be designed.

The rest of paper is organized as follows sections. Section
II describes research done available in this domain. In
Section III, systems have discussed the System Overview and
other. Section IV describes conclusion and future work

II. RELATED WORK

 Apriori is a classic algorithm using the generate-and-
test process that generates a large number of candidate
itemsets ; Apriori has to repeatedly scan entire
database[1] .To reduce the time required for scanning

databases, Han et al. proposed a novel approach called FP-
growth, which avoids generating candidate itemsets[2]. Most
previously developed parallel FIM algorithms were built
upon the Apriori algorithm. Unfortunately, in Apriori-like
parallel FIM algorithms, each processor has to scan a
database multiple times and to exchange an excessive
number of candidate itemsets with other processors[3].

 Therefore, Apriori-like parallel FIM solutions suffer

potential problems of high I/O and synchronization overhead,

which make it strenuous to scale up these parallel algorithms.

This system will implement the parallel Apriori algorithm

based on MapReduce, which makes it applicable to mine

association rules from large databases of transactions [4].

III. IMPLEMENTATION DETAILS

In this a parallel frequent itemsets mining algorithm

called FiDoop (Frequent Itemsets in Hadoop) using the

www.ierjournal.org International Engineering Research Journal (IERJ), Volume 2 Issue 4 Page 1756-1760 ISSN 2395-1621

© 2015, IERJ All Rights Reserved Page 2

MapReduce programming model is proposed to achieve
compact storage and avoid building conditional pattern bases.

IV. PROPOSED SYSTEM OVERVIEW

Fig.1. System overview diagram

User Mall dataset:

 In the first step, system will take as a input mall dataset. In
this system are using e-shopping mall dataset. Whereas fields
are like userid, productid, transactionid, categoryid etc. The
dataset is prepared here for more clear idea of high
dimensional data by user. This data generated by user entry.
This system getting more data by varied user. This system
provides opportunity to user. The Dataset is

Fig2. Data set Entry Form.

referred for this system is form this link
https://mahout.apache.org/users/basics/collections.html

Mining frequent itemsets:

In this phase system discover way to discover right
information from huge data. Extracting frequent patterns
from a large transaction database. A typical ARM application
is market basket analysis. An association rule, for example,
can be “if a customer buys A and B, then 90% of them also
buy C.” In this example, 90% is the confidence of the rule.

The ARM process can be decomposed into two phases: 1)
identifying all frequent itemsets whose support is greater
than the minimum support and 2) forming conditional
implication rules among the frequent itemsets. The first
phase is more challenging and complicated than the second
one[5].

 In this paper system take input as text file. This file
contains structured and unstructured data fields. This text file
contains data about e-shopping mall.

In this system by using rule mining generates relations
among items which generates fix candidate itemsets. Where
these candidate itemsets are used to for foremost mining so it
reduce time and increase efficiency of algorithm.

MapReduce Framework:

 MapReduce is a promising parallel and scalable
programming model for data-intensive applications and
scientific analysis. A MapReduce program expresses a large
distributed computation as a sequence of parallel operations
on datasets of key/value pairs. A MapReduce computation
has two phases, namely, the Map and Reduce phases. The
Map phase splits the input data into a large number of
fragments, which are evenly distributed to Map tasks across
the nodes of a cluster to process. Each Map task takes in a
key-value pair and then generates a set of in-between key-
value pairs. After the MapReduce runtime system groups and
sorts all the middle values associated with the same middle
key, the runtime system delivers the in-between values to
Reduce tasks. Each Reduce task takes in all in-between pairs
associated with a particular key and emits a final set of key,
value pairs. Both input pairs of Map and the output pairs of
Reduce are managed by an underlying distributed file
system[10].

MapReduce has been widely adopted by companies like
Google, Yahoo, Microsoft, and Facebook.

Hadoop—one of the most popular MapReduce
implementations—is running on clusters where Hadoop
distributed file system (HDFS) stores data to provide high
aggregate I/O bandwidth. At the heart of HDFS is a single
NameNode—a master server that manages the file system
namespace and regulates access to files. The Hadoop runtime
system establishes two processes called JobTracker and
TaskTracker. JobTracker is responsible for assigning and
scheduling tasks; each TaskTracker handles Map or Reduce
tasks assigned by JobTracker.

In light of the MapReduce programming model, system
design a parallel frequent itemsets mining algorithm this
algorithm called Fidoop. The design goal of Fidoop is to
build a mechanism that enables automatic parallelization,
load balancing, and data distribution for parallel mining of
frequent itemsets on large clusters [9].

Apache Pig, is platform analyzing large datasets. Pig‟s
language, Pig Latin, is simple query algebra. Pig is simple
data flow language used in analyzing large datasets. Pig
scripts are automatically converted into MapReduce jobs by
the Pig interpreter, so you can analyze the data in hadoop
cluster.

Pig provides feature of User defined function as a way to
specify custom processing.

Scanning User dataset

 In this phase, system scans user dataset as follows,

1) The first phase involving two rounds of scanning a
database is implemented in the form of two MapReduce jobs.
The first MapReduce job is responsible for the first round of
scanning to create frequent oneitemsets. The second
MapReduce job scans the database again to generate k-
itemsets by removing infrequent items in each transaction.

2) The second phase involving the construction of a k-
itemsets and the discovery of frequent k-itemsets is handled
by a second MapReduce job, in which h-itemsets (2 ≤ h ≤ M)
are directly decomposed into a list of (h − 1)-itemsets, (h −
2)-itemsets, . . . , and twoitemsets.

In the second MapReduce job, the generation of short
itemsets is independent to that of long itemsets.

www.ierjournal.org International Engineering Research Journal (IERJ), Volume 2 Issue 4 Page 1756-1760 ISSN 2395-1621

© 2015, IERJ All Rights Reserved Page 3

In other words, long and short itemsets are created in
parallel by our parallel algorithm.

The two MapReduce jobs of our proposed Fidoop are
described in detail. The first MapReduce job discovers all
frequent items or frequent one-itemsets. In this phase, the
input of Map tasks is a database, and the output of Reduce
tasks is all frequent one-itemsets. The second MapReduce
job scans the database to generate k-itemsets by removing
infrequent items in each transaction. First, Fidoop handles a
set of mappers, each of which repeatedly decomposes h-
itemsets (2 < h ≤ M) into a list of (h − 1)-itemsets, (h − 2)-
itemsets, . . . , and two-itemsets. Applying multiple mappers
to decompose h-itemsets in parallel improves data storage
efficiency and I/O performance[10].

Then, Fidoop leverages multiple reducers to merge
itemsets with the same item number including original
itemsets. Fidoop‟s tree-construction procedure takes full
advantage of the Hadoop runtime system, in which the
shuffling phase copies result pairs with a same key generated
by mappers to a reducer. In this approach second MapReduce
job, system chooses item numbers as output keys of key-
value pairs emitted by the mappers. The following
preliminary findings motivate us to address a pressing issue
pertinent to balancing load in Fidoop: 1) large itemsets give
rise to high-decomposition overhead and 2) and small
decomposed itemsets lead to a large number of itemsets. To
achieve good load balancing performance, system
incorporate constraints in the shuffling phase of the
MapReduce jobs in Fidoop, thereby balancing the number of
itemsets across reducers[13]

 Load Balance:

In this phase decomposition process starts, If the length
of an itemset is m, the time complexity of decomposing the
itemset is O(2m). Thus, the decomposition cost is
exponentially proportional to the itemset‟s length. In other
words, when the itemset length is going up, the
decomposition overhead will dramatically enlarged. The data
skewness problem is mainly induced by the decomposition
operation, which in turn has a significant performance impact
on Fidoop[2]. The first step toward balancing load among
data nodes of a Hadoop cluster is to quantitatively measure
the total computing load of processing local itemsets. System
achieve this first step by developing a workload-balance
metric to quantify load balance among the data nodes.
System consider a database partitioned across p data nodes.

Let be the

probability that node i contains itemsets whose length is m.
Here, ISm denotes a set of itemsets where the length of each
itemset is m; Ci(ISm) represents the count of ISm in node i. In
what follows, system define a weight to quantify the
computing load of ISm. Given an itemset ISm, the computing-
load weight of Ism over all the itemsets is defined as

 (1)

where 2m is the time complexity of decomposing m-
itemset C(ISm) is the count of ISm over all available data
nodes. Based on the definition of ω(ISm) in (1). System
define the computing load of node i. Given a transaction
database D partitioned over p nodes and a random itemset X,
the computing load of node i is expressed as

 (2)

The summation of all the computing-load over all nodes is

one; thus, system have .

A data distribution leads to high load-balancing
performance if the weights Wi (i ∈ [1, p]) are identical. On
the other hand, a large discrepancy of the Wi gives rise to
poor load-balancing performance. System introduce the
entropy measure as a load-balancing metric. Given a
database D partitioned over p nodes, the load-balancing
metric is expressed as

 (3)

The WB(D) metric defined in the form of entropy has the

following properties.

1) If WB(D) equals to 1 (i.e., WB(D) = 1), decomposition
load is perfectly balanced across all the nodes.

2) If WB(D) equals to 0 (i.e., WB(D) = 0), decomposition
load is concentrated on one node.

3) All the other cases are represented by 0 < WB(D) < 1.

Optimize the performance

The aforementioned analysis confirms that if the length
of itemsets to be decomposed is large, the decomposition
cost will exponentially increase[7]. In this section, system
conduct experiments to investigate the impact of
dimensionality on Fidoop. Furthermore, in order to facilitate
parallelism, Pfp groups frequent one- itemsets and distributes
the data corresponding to these items to each computing node;
such a grouping strategy is both time and space consuming.
In this phase comparison is made within apriori and fp-
growth algorithm which gives more detail difference of
performance by both. In this comparison performance of fp-
growth algorithm is best than apriori.

Reduce performance time

Nevertheless, when the dimensionality approximately

reaches 30, Fidoop‟s performance starts degrading. This is

because the cost of decomposing a k-itemset is very

expensive (i.e., 2m, m is determined by the dimensionality of

the dataset). The increasing value of the m exponentially

enlarges the running time of Fidoop.

Mathematical Model

Let, System S is represented as: S = { B, L, T, H , J, K, F }

 „S‟ be the | Parallel Mining of Frequent Itemsets Using
Map Reduce the final set.

Identify the inputs as B, L, T

S = {B, L, T …

 B= {B 1, B 2, B 3, B 4, …| „B‟ given as user
information.}

 L= {L 1, L 2, L 3, L 4, …| „L‟ given as user transaction
dataset.}

 T= {T 1, T 2, T 3, T 4, …| „T‟ given as mining dataset.}
Identify the outputs as O
S = {B, L, T, H, J, K…

 H= {H 1, H 2 …| „H‟ is the Response as reduced
transaction dataset.}

www.ierjournal.org International Engineering Research Journal (IERJ), Volume 2 Issue 4 Page 1756-1760 ISSN 2395-1621

© 2015, IERJ All Rights Reserved Page 4

 J= {J 1, J 2 …| „J‟ is the Response as update database}

 K= {K 1, K 2 …| „K‟ is the Response show graphs }

Identify the functions as „F‟

S = {B, L, T, H, J, K, F…

 F = { F1(), F2(), F3(), F4(), F5(),F6(),F7(),F8()}

 F1(B)::Process Requests on login ,Registration.

 F2(B)::Respond as Map reduce.}.

 F3(L)::Process Requests on given load balancing.

 F4 (L):: Respond as update database.

 F5(T)::Process Requests on reducing processing
time.

 F6(T)::Respond as reducing dataset transaction.

V. RESULT AND DISCUSSION

A Dataset

 In this work, system is using e-shopping mall data. All
dataset is in text file format. This system will work on any
mall dataset. In this system, algorithm on 5GB dataset is
tested. Proposed algorithm is working efficient on 5GB high
dimensional dataset. This system can handle large
dataset(more than 10GB).

B Results

This system is comparing Fidoop and Fidoop-hd on the
basis of parallel mining of frequent itemset algorithm. In this
system uses large dataset(5GB) and system analyses data
well. MapReduce Framework is best way to handle this large
dataset.

Fig.3. Shuffling cost for both algorithm

Comparison between fidoop and fidoop-hd is shown in fig.3
in terms of scalability. These are the expected results from
system. In trems of scalability, results will be improved by
60%.

Fig.4. Running time for both algorithm

In fig.4 graph shows running time is improved than
fidoop. Efficiency of this system is increased. Also system is
tested for portability for different platforms like Windows,
Linux version. In fig5 shows comparison of
Apriori(sequential approach) and Fp-growth(Parallel
approach). Fp-growth is efficient than Apriori.

Fig.5. Comparison of Apriori and fp-growth Algorithm.

VI. CONCLUSION

To solve the performance deterioration, load balancing

and scalability challenges of sequential algorithm, various
parallel algorithms were implemented. User gave an
overview of such parallel algorithms. Unfortunately, in
Apriori-like parallel FIM algorithms, each processor has to
scan a database multiple times and to exchange an excessive
number of candidate itemsets with other processors.
Therefore, Apriori-like parallel FIM solutions suffer potential
problems of high I/O and synchronization overhead, which
makes it strenuous to scale up this parallel algorithms.The
scalability problem, has been addressed by the
implementation of a handful of FP-growth-like parallel FIM
algorithms.

VII. ACKNOWLEDGMENT

The authors would like to thank the researchers as well as

publishers for making their resources available and teachers
for their guidance. Finally, we would like to extend a
heartfelt gratitude to friends and familymembers.

REFERENCES

1. R. Agrawal and J. C. Shafer, ``Parallel mining of
association rules´´, IEEE Trans. Knowl. Data Eng., vol. 8,
no. 6, pp. 962969, Dec. 1996.

2. D. W. Cheung and Y. Xiao, ``Effect of data skewness in
parallel mining of association rules‟‟, Research and
Development in Knowledge Discovery and Data Mining.
Berlin, Germany: Springer,1998, pp. 4860.

3. M. J. Zaki,``Parallel and distributed association mining: A
survey ´´, IEEE Concurrency, vol. 7, no. 4, pp.
1425,Oct./Dec. 1999

4. E.-H. Han, G. Karypis, and V. Kumar, ``Scalable parallel
data mining for association rules´´, IEEE Trans. Knowl.
Data Eng., vol. 12, no. 3,pp. 337352, May/Jun 2000 .

5. Pramudiono and M. Kitsuregawa, ``FP-tax: Tree structure
based generalized association rule mining´´, Proc. 9th ACM
SIGMOD, June 2004.

www.ierjournal.org International Engineering Research Journal (IERJ), Volume 2 Issue 4 Page 1756-1760 ISSN 2395-1621

© 2015, IERJ All Rights Reserved Page 5

Workshop Res. Issues Data Min. Knowl. Disc., Paris,France,
2004, pp. 6063.

6. L. Liu, E. Li, Y. Zhang, and Z. Tang, ``Optimization of
frequent itemset mining on multiplecore processor´´, Proc.
33rd Int. Conf. Very Large Data Bases, Vienna, Austria,
2007, pp. 12751285.

7. Chen et al., ``Tree partition based parallel frequent pattern
miningon shared memory systems´´,Proc. 20th IEEE Int.
Parallel Distrib.Process. Symp. (IPDPS), Rhodes Island,
Greece, 2006, pp. 18.

8. J. Dean and S. Ghemawat, ``MapReduce: Simplified data
processing on large clusters ´´,Commun. ACM, vol. 51, no.
1, pp. 107113, Jan. 2008.

9. J. Dean and S. Ghemawat, ``MapReduce: A flexible data
processing tool´´,Commun. ACM,vol. 53, no. 1, pp. 7277,
Jan. 2010.

10. M.-Y. Lin, P.-Y. Lee, and S.-C. Hsueh, ``Apriori-based
frequent itemsetmining algorithms on MapReduce´´, Proc.
6th Int. Conf. Ubiquit. Inf.Manage. Commun. (ICUIMC),
Danang, Vietnam, 2012, pp. 76:1
76:8.[Online].Available:http://doi.acm.org/10.1145/218475
1.2184842.

11. W. Lu, Y. Shen, S. Chen, and B. C. Ooi, ´´Efficient
processing of k nearest neighbor joins using MapReduce´´,
Proc. VLDB Endow., vol. 5,no. 10, pp. 10161027, 2012.

12. Yaling Xun, Jifu Zhang, and Xiao Qin, “FiDoop: Parallel
Mining of Frequent Itemsets Using MapReduce” IEEE
TRANSACTIONS ON SYSTEMS, MAN, AND
CYBERNETICS: SYSTEMS, 2168-2216, 2015 IEEE.

13. Anjali Kadam, Nilam Patil,”Improving Performance
ofParallel Mining of frequent Itemsets using Fidoop” Fifth
Post Graduate Conference of Computer Engineering
cPGCON-2016

