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ABSTRACT 

 

ARTICLE INFO 

Present parallel mining algorithms for frequent item sets lack a mechanism that enables 

automatic parallelization, load balancing, data administration, and fault liberality on 

large clusters. As a solution to this problem, design a parallel frequent item sets mining 

algorithm called Fidoop using the Map Reduce programming model. To achieve 

compressed storage and avoid building restrictive pattern bases, Fidoop incorporates 

the frequent items ultrametric tree, rather than regular FP trees. In Fidoop, two 

MapReduce jobs are implemented to complete the mining task. In the complex 

MapReduce job, the mappers independently decay item sets, the reducers perform 

combination operations by compressing data. This system implement Fidoop on private 

Hadoop cluster. This system show that Fidoop on the cluster is sensitive to data 

distribution and dimensions, because item sets with distinct lengths have different 

decaying and construction costs. In this paper system improve Fidoop’s performance, 

system develop a workload balance metric to measure load balance across the cluster’s 

computing nodes. System processes Fidoop-HD, an extension of Fidoop, to speed up the 

mining performance for high-dimensional data analysis. Experiments are shown using 

real-world celestial face of data demonstrate that our proposed solution is efficient and 

scalable. 
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I. INTRODUCTION 

 

Data Mining has a great approach about the information 
industry and in society as a whole in recent years. One of the 
major problems in data mining is finding association rules 
from databases of transactions where each transaction 
consists of a set of items. Many ways have been proposed to 
find frequent item sets from a large database. Parallel 
computing offers a possible solution to the computation 
requirement of this task, if the efficient and scalable parallel 
algorithms can be designed.  

The rest of paper is organized as follows sections. Section 
II describes research done available in this domain. In 
Section III, systems have discussed the System Overview and 
other. Section IV describes conclusion and future work 

II. RELATED WORK 

   Apriori is a classic algorithm using the generate-and-
test process that generates a large number of candidate 
itemsets ; Apriori has to repeatedly scan entire 
database[1] .To reduce the time required for scanning  

 

 
 
databases, Han et al. proposed a novel approach called FP-
growth, which avoids generating candidate itemsets[2]. Most 
previously developed parallel FIM algorithms were built 
upon the Apriori algorithm. Unfortunately, in Apriori-like 
parallel FIM algorithms, each processor has to scan a 
database multiple times and to exchange an excessive 
number of candidate itemsets with other processors[3].  

    Therefore, Apriori-like parallel FIM solutions suffer 

potential problems of high I/O and synchronization overhead, 

which make it strenuous to scale up these parallel algorithms. 

This system will implement the parallel Apriori algorithm 

based on MapReduce, which makes it applicable to mine 

association rules from large databases of transactions [4]. 

III. IMPLEMENTATION DETAILS 

 
In this a parallel frequent itemsets mining algorithm 

called FiDoop (Frequent Itemsets in Hadoop) using the 



www.ierjournal.org                     International Engineering Research Journal (IERJ), Volume 2 Issue 4 Page 1756-1760 ISSN 2395-1621 

 
© 2015, IERJ All Rights Reserved  Page 2 

 

MapReduce programming model is proposed to achieve 
compact storage and avoid building conditional pattern bases. 

IV. PROPOSED SYSTEM OVERVIEW 

 

 

Fig.1. System overview diagram 

 

User Mall dataset:  

   In the first step, system will take as a input mall dataset. In 
this system are using e-shopping mall dataset. Whereas fields 
are like userid, productid, transactionid, categoryid etc. The 
dataset is prepared here for more clear idea of high 
dimensional data by user. This data generated by user entry. 
This system getting more data by varied user. This system 
provides opportunity to user. The Dataset is  
 

 
 

Fig2. Data set Entry Form. 
 
referred for this system is form this link 
https://mahout.apache.org/users/basics/collections.html    
 
Mining frequent itemsets: 
 

In this phase system discover way to discover right 
information from huge data. Extracting frequent patterns 
from a large transaction database. A typical ARM application 
is market basket analysis. An association rule, for example, 
can be “if a customer buys A and B, then 90% of them also 
buy C.” In this example, 90% is the confidence of the rule. 

The ARM process can be decomposed into two phases: 1) 
identifying all frequent itemsets whose support is greater 
than the minimum support and 2) forming conditional 
implication rules among the frequent itemsets. The first 
phase is more challenging and complicated than the second 
one[5]. 

     In this paper system take input as text file. This file 
contains structured and unstructured data fields. This text file 
contains data about e-shopping mall.  

In this system by using rule mining generates relations 
among items which generates fix candidate itemsets. Where 
these candidate itemsets are used to for foremost mining so it 
reduce time and increase efficiency of algorithm. 

MapReduce Framework: 

   MapReduce is a promising parallel and scalable 
programming model for data-intensive applications and 
scientific analysis. A MapReduce program expresses a large 
distributed computation as a sequence of parallel operations 
on datasets of key/value pairs. A MapReduce computation 
has two phases, namely, the Map and Reduce phases. The 
Map phase splits the input data into a large number of 
fragments, which are evenly distributed to Map tasks across 
the nodes of a cluster to process. Each Map task takes in a 
key-value pair and then generates a set of in-between key-
value pairs. After the MapReduce runtime system groups and 
sorts all the middle values associated with the same middle 
key, the runtime system delivers the in-between values to 
Reduce tasks. Each Reduce task takes in all in-between pairs 
associated with a particular key and emits a final set of key, 
value pairs. Both input pairs of Map and the output pairs of 
Reduce are managed by an underlying distributed file 
system[10]. 

MapReduce has been widely adopted by companies like 
Google, Yahoo, Microsoft, and Facebook. 

Hadoop—one of the most popular MapReduce 
implementations—is running on clusters where Hadoop 
distributed file system (HDFS) stores data to provide high 
aggregate I/O bandwidth. At the heart of HDFS is a single 
NameNode—a master server that manages the file system 
namespace and regulates access to files. The Hadoop runtime 
system establishes two processes called JobTracker and 
TaskTracker. JobTracker is responsible for assigning and 
scheduling tasks; each TaskTracker handles Map or Reduce 
tasks assigned by JobTracker. 

In light of the MapReduce programming model, system 
design a parallel frequent itemsets mining algorithm this 
algorithm called Fidoop. The design goal of Fidoop is to 
build a mechanism that enables automatic parallelization, 
load balancing, and data distribution for parallel mining of 
frequent itemsets on large clusters [9]. 

Apache Pig, is platform analyzing large datasets. Pig‟s 
language, Pig Latin, is simple query algebra. Pig is simple 
data flow language used in analyzing large datasets. Pig 
scripts are automatically converted into MapReduce jobs by 
the Pig interpreter, so you can analyze the data in hadoop 
cluster. 

Pig provides feature of User defined function as a way to 
specify custom processing.  

Scanning User dataset 

   In this phase, system scans user dataset as follows, 

1) The first phase involving two rounds of scanning a 
database is implemented in the form of two MapReduce jobs. 
The first MapReduce job is responsible for the first round of 
scanning to create frequent oneitemsets. The second 
MapReduce job scans the database again to generate k-
itemsets by removing infrequent items in each transaction. 

2) The second phase involving the construction of a k-
itemsets and the discovery of frequent k-itemsets is handled 
by a second MapReduce job, in which h-itemsets (2 ≤ h ≤ M) 
are directly decomposed into a list of (h − 1)-itemsets, (h − 
2)-itemsets, . . . , and twoitemsets. 

In the second MapReduce job, the generation of short 
itemsets is independent to that of long itemsets. 
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In other words, long and short itemsets are created in 
parallel by our parallel algorithm. 

The two MapReduce jobs of our proposed Fidoop are 
described in detail. The first MapReduce job discovers all 
frequent items or frequent one-itemsets. In this phase, the 
input of Map tasks is a database, and the output of Reduce 
tasks is all frequent one-itemsets. The second MapReduce 
job scans the database to generate k-itemsets by removing 
infrequent items in each transaction. First, Fidoop handles a 
set of mappers, each of which repeatedly decomposes h-
itemsets (2 < h ≤ M) into a list of (h − 1)-itemsets, (h − 2)-
itemsets, . . . , and two-itemsets. Applying multiple mappers 
to decompose h-itemsets in parallel improves data storage 
efficiency and I/O performance[10]. 

Then, Fidoop leverages multiple reducers to merge 
itemsets with the same item number including original 
itemsets. Fidoop‟s tree-construction procedure takes full 
advantage of the Hadoop runtime system, in which the 
shuffling phase copies result pairs with a same key generated 
by mappers to a reducer. In this approach second MapReduce 
job, system chooses item numbers as output keys of key-
value pairs emitted by the mappers. The following 
preliminary findings motivate us to address a pressing issue 
pertinent to balancing load in Fidoop: 1) large itemsets give 
rise to high-decomposition overhead and 2) and small 
decomposed itemsets lead to a large number of itemsets. To 
achieve good load balancing performance, system 
incorporate constraints in the shuffling phase of the 
MapReduce jobs in Fidoop, thereby balancing the number of 
itemsets across reducers[13]  

 Load Balance: 

In this phase decomposition process starts, If the length 
of an itemset is m, the time complexity of decomposing the 
itemset is O(2m). Thus, the decomposition cost is 
exponentially proportional to the itemset‟s length. In other 
words, when the itemset length is going up, the 
decomposition overhead will dramatically enlarged. The data 
skewness problem is mainly induced by the decomposition 
operation, which in turn has a significant performance impact 
on Fidoop[2]. The first step toward balancing load among 
data nodes of a Hadoop cluster is to quantitatively measure 
the total computing load of processing local itemsets. System 
achieve this first step by developing a workload-balance 
metric to quantify load balance among the data nodes. 
System consider a database partitioned across p data nodes. 

Let  be the 

probability that node i contains itemsets whose length is m. 
Here, ISm denotes a set of itemsets where the length of each 
itemset is m; Ci(ISm) represents the count of ISm in node i. In 
what follows, system define a weight to quantify the 
computing load of ISm. Given an itemset ISm, the computing-
load weight of Ism over all the itemsets is defined as 

                                        (1)        

where 2m is the time complexity of decomposing m-
itemset C(ISm) is the count of ISm over all available data 
nodes. Based on the definition of ω(ISm) in (1). System 
define the computing load of node i. Given a transaction 
database D partitioned over p nodes and a random itemset X, 
the computing load of node i is expressed as  

                                 (2) 

 

The summation of all the computing-load over all nodes is 

one; thus, system have .  

A data distribution leads to high load-balancing 
performance if the weights Wi (i ∈ [1, p]) are identical. On 
the other hand, a large discrepancy of the Wi gives rise to 
poor load-balancing performance. System introduce the 
entropy measure as a load-balancing metric. Given a 
database D partitioned over p nodes, the load-balancing 
metric is expressed as  

                                     (3) 

The WB(D) metric defined in the form of entropy has the 

following properties. 

1) If WB(D) equals to 1 (i.e., WB(D) = 1), decomposition 
load is perfectly balanced across all the nodes. 

2) If WB(D) equals to 0 (i.e., WB(D) = 0), decomposition 
load is concentrated on one node. 

3) All the other cases are represented by 0 < WB(D) < 1. 

 

Optimize the performance 

The aforementioned analysis confirms that if the length 
of itemsets to be decomposed is large, the decomposition 
cost will exponentially increase[7]. In this section, system 
conduct experiments to investigate the impact of 
dimensionality on Fidoop. Furthermore, in order to facilitate 
parallelism, Pfp groups frequent one- itemsets and distributes 
the data corresponding to these items to each computing node; 
such a grouping strategy is both time and space consuming.  
In this phase comparison is made within apriori and fp-
growth algorithm which gives more detail difference of 
performance by both. In this comparison performance of fp-
growth algorithm is best than apriori. 

Reduce performance time 

Nevertheless, when the dimensionality approximately 

reaches 30, Fidoop‟s performance starts degrading. This is 

because the cost of decomposing a k-itemset is very 

expensive (i.e., 2m, m is determined by the dimensionality of 

the dataset). The increasing value of the m exponentially 

enlarges the running time of Fidoop. 

 

Mathematical Model 

Let, System S is represented as: S = { B, L, T, H , J, K, F } 

   „S‟ be the |  Parallel Mining of Frequent Itemsets Using 
Map     Reduce the final set. 

Identify the inputs as  B, L, T 

S = {B, L, T … 

   B= {B 1, B 2, B 3, B 4, …| „B‟ given as user 
information.} 

   L= {L 1, L 2, L 3, L 4, …| „L‟ given as user transaction 
dataset.} 

   T= {T 1, T 2, T 3, T 4, …| „T‟ given as mining dataset.} 
Identify the outputs as O 
S = {B, L, T, H, J, K… 

  H= {H 1, H 2 …| „H‟ is the Response as  reduced 
transaction dataset.} 
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  J= {J 1, J 2 …| „J‟ is the Response as  update database} 

  K= {K 1, K 2 …| „K‟ is the Response show graphs } 

Identify the functions as „F‟ 

S = {B, L, T, H, J, K, F… 

   F = { F1(), F2(), F3(), F4(), F5(),F6(),F7(),F8()} 

       F1(B)::Process Requests on login ,Registration. 

       F2(B)::Respond as  Map reduce.}. 

       F3(L)::Process Requests on given load balancing. 

             F4 (L):: Respond as  update database. 

             F5(T)::Process Requests on reducing processing   
time.                         

      F6(T)::Respond as  reducing dataset transaction. 

V. RESULT AND DISCUSSION 

 
A  Dataset  

     In this work, system is using e-shopping mall data. All 
dataset is in text file format. This system will work on any 
mall dataset. In this system, algorithm on 5GB dataset is 
tested. Proposed algorithm is working efficient on 5GB high 
dimensional dataset. This system can handle large 
dataset(more than 10GB). 

B  Results 

This system is comparing Fidoop and Fidoop-hd on the 
basis of parallel mining of frequent itemset algorithm. In this 
system uses large dataset(5GB) and system analyses data 
well. MapReduce Framework is best way to handle this large 
dataset.  

 

Fig.3. Shuffling cost for both algorithm   

Comparison between fidoop and fidoop-hd is shown in fig.3 
in terms of scalability. These are the expected results from 
system. In trems of scalability, results will be improved by 
60%.    

 

Fig.4. Running time for both algorithm 

In fig.4 graph shows running time is improved than 
fidoop. Efficiency of this system is increased. Also system is 
tested for portability for different platforms like Windows, 
Linux version. In fig5 shows comparison of 
Apriori(sequential approach) and Fp-growth(Parallel 
approach). Fp-growth is efficient than Apriori. 

 

Fig.5. Comparison of  Apriori and fp-growth Algorithm. 

VI. CONCLUSION 

 
To solve the performance deterioration, load balancing 

and scalability challenges of sequential algorithm, various 
parallel algorithms were implemented. User gave an 
overview of such parallel algorithms. Unfortunately, in 
Apriori-like parallel FIM algorithms, each processor has to 
scan a database multiple times and to exchange an excessive 
number of candidate itemsets with other processors. 
Therefore, Apriori-like parallel FIM solutions suffer potential 
problems of high I/O and synchronization overhead, which 
makes it strenuous to scale up this parallel algorithms.The 
scalability problem, has been addressed by the 
implementation of a handful of FP-growth-like parallel FIM 
algorithms. 
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